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ABSTRACT 

 

 The sacoglossan sea slug Elysia clarki is able to photosynthesize for three to four 

months using chloroplasts sequestered from its algal food sources. Furthermore, the slug 

is able to store multiple chloroplasts from different algal species within the same cell.  

This research, consisting of several related studies, explores the role that provision of 

organic nutrients via photosynthesis plays in the biology of the slug.  The first chapter 

demonstrates that, under conditions of starvation, photosynthetic activity in E. clarki 

remains fully functional for one month after which it then declines.  During the first 

month of starvation the slug exhibits similar feeding behavior as slugs provided a 

continuous supply of food, suggesting that photosynthesis delays the onset of starvation-

induced behavioral changes.  The second chapter explores E. clarki’s spatial relationships 

with algae known to be food sources in the field.  In areas with high slug density, edible 

algal populations were very low.  DNA barcoding was employed to demonstrate that the 

algae found near slugs were poor predictors of which foods were actually consumed by 

slugs.  Generally, there was a mismatch between algae available in the field and slug 

diets.  The third chapter explores how E. clarki is able to maintain photosynthesis.  After 

labeling with a C14 ALA incubation process, then chlorophyll was extracted from slugs 

and purified using HPLC.  Results indicate that recently collected E. clarki are able to 

synthesize chlorophyll, whereas slugs starved for 3 months were not.  Photosynthesis 

plays a very important role for E. clarki and its relationships with food algae.  
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GENERAL INTRODUCTION 

 

 Sacoglossan sea slugs (Opisthobranch: Mollusca) are a group of herbivorous 

gastropods that feed on coenocytic green algae. An interesting characteristic of is that a 

number of species are able to sequester chloroplasts, ingested from their algal food, 

inside of specialized cells in the digestive tubules (Pierce and Curtis 2012).  These 

chloroplasts are then maintained and remain photosynthetically active.  This process, 

often called “kleptoplasty”, provides the slug with an alternative energy source to 

heterotrophy (Trench et al. 1969, Clark et al. 1990, Pierce et al. 2012).  Recent studies 

have discovered that kleptoplasty may increase sacoglossan survival during starvation 

(Gimènez-Casalduero and Muniain 2008) 

 My study focuses on Elysia clarki, a sacoglossan endemic to the Florida Keys, 

USA, typically found in near-shore shallow water habitats.   Elysia clarki is able to 

maintain photosynthesis for over 3 months (Pierce et al. 2006) without feeding and can 

even sequester chloroplasts from multiple algal species within a single cell (Curtis et al. 

2006).  Specifically, the work presented below investigates how the relationship between 

E. clarki and its algal food sources and sequestered chloroplasts affects the distribution, 

ecology, and behavior of the slug. 

 This dissertation is divided into three chapters.  The first chapter focuses on how 

E. clarki’s photosynthetic ability modifies the behavior of the slug when it is faced with 

starvation, given that kleptoplasty provides the slugs with an extra energy source.  This 
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laboratory-based study measured changes in the slugs’ fluorescence and chlorophyll 

concentration, as proxies of measuring photosynthesis, at different intervals of starvation. 

Additionally, behavioral feeding experiments were conducted to determine if slugs 

display a prolonged satiation effect from photosynthetic activity. 

 The second chapter is primarily field-based and examines the spatial distribution 

of E. clarki relative to its algal food sources.  Of primary interest was determining if there 

was a strong spatial relationship between E. clarki and its algal food sources and if algal 

availability can be used to determine E. clarki’s diet.  In 2008-2010, detailed field 

surveys were conducted at 4 sites across the Florida Keys, USA during which the 

location of slugs and potential food sources were recorded.   Slugs were also collected 

from each of the 4 sites in 2008 and were further examined to determine which foods 

were consumed in the field, based upon the identity of chloroplasts sequestered by the 

slugs.  Here molecular techniques were utilized to identify the algal species consumed 

through the rbcL chloroplast gene.  Molecular results were then compared with 

observations from the field surveys to gather unique information on actual resource use in 

relation to relative availability. 

 The third and final chapter was designed to explore the mechanism by which E. 

clarki is able to maintain photosynthesis over a time period of up to many months.  In a 

laboratory setting, field collected slugs were exposed to an isotope of C14 ALA as a label.  

Then, High Performance Liquid Chromatography was used to separate chlorophyll and 

evaluate whether E. clarki is able to synthesize both chlorophyll a and b for use in 

maintaining chloroplasts and photosynthesis.  Furthermore this experiment provided data 
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to evaluate whether E. clarki can continue to synthesize chlorophyll after photosynthetic 

activity declines. 
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CHAPTER ONE: 

FORAGING BEHAVIOR UNDER STARVATION CONDITIONS IS ALTERED 

VIA PHOTOSYNTHESIS BY THE MARINE GASTROPOD, ELYSIA CLARKI 

 
 
Note to Reader: 
 
 Portions of these results have been previously published (Middlebrooks, et al. 

2011) and are utilized with permission of the publisher.  

 

Introduction: 

Foraging behavior of animals, defined here as actively searching for and 

consuming food, encompasses diverse processes such as dispersal, predator-prey 

interactions, predation risk, and resource optimization (Houston 1991, Vadas et al. 1994, 

Jeschke 2007, Bonte et al. 2008).  Animals deprived of food are more likely to travel 

further and invest more time in search of food than satiated conspecifics (Torres et al. 

2002), thereby utilizing energy that might otherwise have been allocated to purposes such 

as growth or reproduction.  Additionally, starved animals may exhibit reduced anti-

predatory behavior to gain increased access to a food source (Vadas et al. 1994).   Some 

models based upon risk-sensitive foraging theory suggest that animals will choose a more 

variable array of energy-yielding food items during periods of starvation (Stephens 1981, 

Houston 1991).  Specific behavioral displays in response to  starvation can be highly 

variable, as environmental conditions (e.g. predators, refuge) (Wojdak 2009)or 

physiological traits, such as fat storage, (Jacome et al. 1995, Prop et al. 2003) might 
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modulate responses. Altogether, starvation generally modifies the actions related to food 

acquisition  (Vadas et al. 1994, Avila et al. 1998, Prop et al. 2003, Biesinger and Haefner 

2005) which in turn may have consequences for an organism’s survival and interspecific 

interactions (Vadas et al. 1994).  

Most animals which forage are limited to acquiring energy by ingestion (Venn et 

al. 2008).  However, a number of species from diverse taxa not only acquire energy 

through assimilation of ingested food but also by photosynthesis conducted by  

endosymbiotic zooxanthellae or stored algal chloroplasts and are termed mixotrophic  

(Trench and Ohlhorst 1976, Stoecker et al. 1989, Venn et al. 2008).  Depending on light 

conditions, these photosynthetic animals can derive a significant portion of energy 

yielding metabolites via photosynthetic pathways (Anthony and Fabricius 2000).  As a 

result, photosynthetic animals may have different behavioral responses to a lack of food 

than are displayed by non-photosynthetic capable species.  Thus, despite food limitation, 

if photosynthesis provides sufficient metabolites, then the incidence of food searching 

behavior, and the associated elevated risk of mortality, might be correspondingly reduced 

or even eliminated.  Although studies have demonstrated the effect of photosynthesis on 

feeding rates in corals (Titlyanov et al. 2000, Piniak 2002), the foraging behavior of 

starved photosynthetic-capable animals which are motile has not been well studied.   

Most animal species capable of utilizing photosynthesis as an energy source are 

aquatic and sessile (e.g. corals, sponges, giant clams) or have limited motility (e.g. 

benthic jellyfish), and thereby do not forage at all (Venn et al. 2008).   However, the 

sacoglossan (Opisthobranchia: Mollusca) sea slugs are highly motile and actively forage 

on algae, which is usually siphonaceous and typically found in shallow water (Clark et al. 
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1990).  Importantly, many sacoglossans are capable of kleptoplasty, a process by which 

slugs photosynthesize using chloroplasts which are sequestered from the algal food by 

specialized cells of the digestive tubules (Figure 1.1) (Greene 1970, Greene and 

Muscatin.L 1972, Trench and Ohlhorst 1976, Clark et al. 1990).  Nuclear genes 

horizontally transferred from algae into the slugs likely play an important role in the 

slugs’ ability to photosynthesize (Pierce et al. 2008, Pierce et al. 2009).  These combined 

features suggest that kleptoplastic sea slugs are a specialized group of herbivores which 

can be utilized to examine how the level of satiation/starvation affects foraging behavior 

in a photosynthetic animal.  Although increased foraging efforts under starvation 

conditions and a decrease during satiation is usual for many species (Torres et al. 2002, 

Jeschke 2007), the foraging behavior of photosynthetic sea slugs may be different, if food 

is withheld, provided that photosynthesis continues. 

Previous studies of kleptoplastic slugs have considered the evolutionary benefit of 

supplemental energy provided by sequestered chloroplasts. A relatively large amount of 

sequestered chloroplasts could allow less time to be spent foraging (Marin and Ros 

1993).  Kleptoplasty might also increase slug survival during times of famine (Gimènez-

Casalduero and Muniain 2008).   However, among sacoglossan species, the length of 

time that algal chloroplasts remain functional is quite variable, ranging from only several 

hours to up to 9 months (Clark et al. 1990, Händeler et al. 2009).  Therefore the impact of 

photosynthetic metabolites must also vary among species, and kleptoplastic slugs 

experiencing food limitations may only manage to delay behavioral changes related to 

food gathering, rather than completely avoid modifying their behavior.  Although 

kleptoplasty provides metabolites to slugs, ultimately most slug species require ingested 
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food at least to replace degraded chloroplasts (Clark et al. 1990, Händeler et al. 2009) 

with the notable exception of Elysia chlorotica  which can complete the entire adult 

portion of its life cycle (up to 9 months) relying only on photosynthesis (Pierce et al. 

1996, Mondy and Pierce 2003).  Thus, the benefits of kleptoplasty are time limited.  It is 

likely that, for most kleptoplastic organisms, as photosynthetic function declines foraging 

behavior will increase.  

 We describe here a set of experiments examining the incidence of foraging 

behavior displayed by a kleptoplastic slug subjected to different conditions of starvation.  

Our hypothesis was that starved slugs would not change their foraging behavior while 

able to photosynthesize.  However, as starvation continues and photosynthetic activity 

decreases due to chloroplast failure (Clark et al. 1990, Händeler et al. 2009) foraging 

behavior likely is triggered.  Therefore once photosynthesis has ceased, an increase in 

starvation time should also increase the probability of slugs exhibiting behavior linked to 

food acquisition. 

Methods: 

Source and Maintenance of Slugs:  Elysia clarki (Figure 1.2), a sacoglossan 

species (Pierce et al. 2006), is an excellent organism for evaluating the relationship 

between kleptoplasty and  feeding behavior.  The slug lives in the Florida Keys in near-

shore, low wave energy habitats, such as mangrove swamps, borrow pits, and mooring 

canals.  It feeds suctorially on several species of siphonaceous green algae including 

Penicillus capitatus, P. lamourouxii, Halimeda incrassata,  Bryopsis plumosa, and 

Derbesia tenissima (Curtis et al. 2004, Curtis et al. 2006, Curtis et al. 2007).   The slug 
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sequesters the chloroplasts from all of these species and uses them for photosynthesis.  

Furthermore, E. clarki  photosynthesizes using the stored chloroplasts for up to three 

months without ingesting food and attains relatively large size (up to 35mm)(Pierce et al. 

2006). Unlike the case for many Elysia species, which are tiny, observations of feeding 

behavior and measurements of photosynthesis are possible with E. clarki. 

Project Overview:  In order to assess the effects of starvation on photosynthesis 

and feeding behavior of E. clarki, slugs were collected from the field and assigned to 

feeding trials representing different levels of provided food.  Once desired time of 

starvation for the experiment had been established, the slugs’ feeding behavior was 

assessed.  Finally, the amount of sequestered chlorophyll and photosynthetic rates of the 

slugs were measured and any display of feeding behavior was noted to determine whether 

photosynthesis was associated with delayed onset of foraging.  

Specimens of E. clarki  approximately 2cm in length were collected by snorkel 

from a borrow pit on Grassy Key, FL (24°44'56.07"N, 80°58'42.77"W) with permission 

from the Florida Fish and Wildlife Conservation Commission (permit # SAL-11-0616-

SR) and then transported to the laboratory at the University of South Florida in Tampa, 

FL  during July 2009.  Twenty-four groups of 4 slugs were randomly assigned to 10L 

aquaria filled with artificial seawater (Instant Ocean TM) and treated one time before the 

start of the experiments with the antibiotics, Penicillin and Streptomycin (100µg/ml) to 

control bacteria.  Aquaria were maintained at room temperature (~20oC).  Photoperiod 

was maintained by alternating 12 hr light/dark cycles provided by overhead cool-white 

fluorescent lights.  All slugs were initially starved for 4 weeks to ensure empty guts 

before the start of the experiment.  Then, for a 2 week period, all aquaria were stocked 
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with the algae P. capitatus (Figure 1.2), collected from a local seagrass bed near Tarpon 

Springs, FL (28° 8' 38.73" N, 82° 47' 26.49" W), and slugs were allowed to feed ab 

libitum. 

 After the 2 week feeding period, slugs were randomly assigned to one of three 

starvation level treatments, or a satiation control.  The experiment was designed to 

represent a gradient of food availability and associated physiological state ranging from 

no food (starvation) to continuous access to food (satiation).    Completely starved slugs 

had all algal food removed at the start, and were starved for the entire 12 week trial.  

Other slugs received food for 4 or 8 weeks respectively, and were then starved for the rest 

of the 12 week trial.  The control group received a continuous supply of food for the 

entire 12 week experiment and slugs in this treatment were considered satiated.  Each of 

the feeding treatments was replicated in 6 aquaria (n=24 total).  All slugs were provided 

light (overhead cool white fluorescent lights) on the 12hr light/dark cycle to allow 

photosynthesis.  After 12 weeks, the slugs from each feeding treatment were tested for 

their response to food.   

Feeding Behavior:  In order to examine the impact of starvation on feeding 

behavior of E. clarki, we tested feeding behavior of slugs as follows:  Observations of 

slugs were made in 2L glass beakers filled with 1L of artificial seawater (Instant 

OceanTM), and each containing an individual cap and stipe of P. capitatus, placed on the 

bottom.   Penicillus capitatus was the only food source presented to slugs during the 

trials.  The beakers were maintained in ambient light conditions during the feeding trials 

which took place during daylight hours.  Individuals of P. capitatus were only used once 

and beakers were then emptied and cleaned for subsequent trials.  Individual slugs were 
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placed into containers with their anterior end ~1cm from the alga to ensure slugs would 

have quick access to the food.  Preliminary trials determined that this design represented 

the most effective arrangement to determine whether a slug initiated the feeding 

response.     

 After placement into an experimental container, slugs were observed for 5 min to 

determine if any feeding behavior occurred, defined as moving to and remaining on the 

alga.  Although the physical presence of the slug on the alga does not necessarily indicate 

feeding, it reflects the position of the slug when it naturally feeds in the field.   Because 

the slugs feed by sucking contents out of algal filaments, the densely packed architecture 

of filaments (Jensen 1993) prevents actual confirmation that the slug fed on the alga 

within the 5 min observation period.   The length of feeding observations was constrained 

to 5 min because slugs were subsequently analyzed for chlorophyll concentration and 

additional feeding time could increase the amount of chlorophyll present in an individual 

slug.   

 To test the prediction that the proportion of slugs displaying feeding behavior 

(yes/no) would increase as time of starvation (continuous predictor) increased, we 

analyzed the results of experimental trials using the general linear model (GLM) via 

StatisticaTM.  For the feeding experiment, slugs were analyzed as  the of individuals that 

fed for each starvation treatment.  To obtain a direct comparison between treatments, 

each possible combination of pairs of the 4 treatment groups was tested separately to 

evaluate differences using a Chi-squared goodness of fit test. For example, the control 

group and the 12 week starvation group were analyzed together without the 4 and 8 week 

starvation groups.   
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Changes in Photosynthetic Ability:  Once behavior had been evaluated, we 

measured two aspects of photosynthetic capabilities of sequestered chloroplasts within 

the slugs used in behavioral observation:  Pulse Amplitude Modulated (PAM) 

Fluorometry for quantifying chlorophyll fluorescence and chlorophyll a (Chl a) extraction 

to determine the amount of Chl a remaining in the slugs.  We used both fluorescence and 

Chl a concentration [Chl a] because each provides a different measure of photosynthesis.  

The amount of Chl a serves as an estimate of the amount of sequestered chloroplasts 

within a slug (Stirts and Clark 1980, Hoeghguldberg and Hinde 1986, Gimènez-

Casalduero and Muniain 2008), while fluorescence measures the photosynthetic activity 

(Wägele and Johnsen 2001).  The latter may or may not be related to the amount of algal 

chloroplasts depending on the condition of the chloroplasts.  Therefore, although 

photosynthetic activity and [Chl a] are often correlated, high [Chl a] can be present 

despite low photosynthetic activity (Trench and Ohlhorst 1976). 

PAM Fluorescence:  Photosynthetic activity of each slug used in the feeding trial 

was measured using a PAM Fluorometer, which measures chlorophyll a fluorescence 

originating from photosystem II by emitting a strong pulse of light and measuring the 

returning fluorescence (Hader et al. 1997, Wägele and Johnsen 2001) (Diving PAM, 

Walz, Germany).  PAM has also been used successfully by others to measure 

photosynthesis in sea slugs (Wägele and Johnsen 2001). Slugs were first dark adapted for 

20 min in a dark room, and then measured for maximum quantum yield of fluorescence 

(�IIe) using the PAM and the following equation: 

                                FmFoFmIIe /)( −=Φ  
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where Fm is the maximum fluorescence during the light pulse and F0 is the fluorescence 

measured in dark-acclimated tissues before the light pulse is emitted(Wägele and Johnsen 

2001).   Each slug was measured three times to ensure an accurate reading of �IIe and a 

mean value of all three �IIe readings was determined. 

Chl a measurement:  Upon completion of the PAM measurements, slugs were 

freeze-dried and weighed (g).  The freeze-dried slugs were each homogenized in acetone 

and then centrifuged (~12,000 X G).   The supernatant was saved and absorbance 

determined at 423 nm (Beckman Coulter DU 640TM Spectrophotometer), the wavelength 

at which Chl a absorbs (Joyard et al. 1987).  [Chl a] were then calculated from a standard 

Chl a curve and normalized (µg chl a/g dry weight of slug) (Joyard et al. 1987). 

A. priori we expected to find higher maximum quantum yield and [Chl a] in slugs 

which had been feeding more recently.  Maximum quantum yield was analyzed across 

treatments using a one way analysis of variance (ANOVA) followed by a Tukey HSD 

post hoc test with starvation length as the predictor and �IIe as the dependent variable. 

[Chl a] was analyzed across starvation treatments using a one way ANOVA and Tukey 

HSD post hoc analysis after being log-transformed to meet ANOVA assumptions of 

homoscedasticity.  For these analyses, starvation length was the predictor and [Chl a] the 

dependent variable.  

Results: 

Significant differences in slug feeding behavior and length of starvation were 

clearly evident.  Slugs from all treatments displayed some feeding behavior; however, 

slugs from the continuously fed control, as well as those starved for 4 weeks, were less 
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likely to feed than slugs starved for 8 and 12 weeks (Figure 1.3).   Thirty-three percent of 

slugs in both the control and 4 week starvation group displayed feeding behavior, 

compared to 73% and 69% of the slugs in the 8 and 12 week starvation period, 

respectively. The length of time that slugs were starved was significantly associated with 

the proportion of slugs displaying feeding behavior (p<0.001, F=13.67) (GLM).  Pair-

wise Chi-squared goodness of fit tests indicated that slug foraging behavior in both the 

control and 4 week starvation treatments were not significantly different from each other, 

but both were different from slugs in the 8  (p<0.05, χ
2=4.311) and the 12 (p<0.05, 

χ
2=4.200) week starvation groups.   

The length of starvation significantly reduced Chl a fluorescence (PAM) (F3,9 

=33.81, p<0.001).  The mean �IIe in the continually feeding control slugs was 

approximately 2.5 x higher than slugs starved for 8 weeks and over 3 x higher than slugs 

starved for 12 weeks.  Both the controls and slugs from the 4 week starvation group had a 

significantly higher mean �IIe than that of slugs starved for either 8 or 12 weeks 

(p<0.001) (Figure 1.4).   

[Chl a] (µg chl a/g dry weight of slug) in slugs declined as the length of starvation 

increased.  After 12 weeks of starvation, [Chl a] was less than 1/3 that recorded for 

control slugs.  An overall decrease in [Chl a] was detected in all starvation groups (F3,9 

=10.10, p<0.001) (Figure 1.5).  Tukey HSD post hoc analysis showed that [Chl a] from 

both the 8 and 12 week starvation treatments were significantly lower than that for the 

continuously fed control (p<0.01) (Figure 1.5).   The [Chl a] in slugs starved for 4 weeks 

was only significantly different from the slugs starved for 12 week (p<0.01).   
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Discussion: 

 Eventually, an increased length of starvation increased the likelihood of foraging 

behavior in E. clarki, as usual with starvation (Vadas et al. 1994, Biesinger and Haefner 

2005, Jeschke 2007).  However unlike earlier studies, our findings highlight that E. 

clarki’s foraging behavior is further modified by its photosynthetic capability.   The onset 

of the foraging behavior in E. clarki in response to prolonged starvation was delayed 

during the time period that the slugs’ photosynthetic capabilities remain relatively high.  

Some slugs foraged although satiated, under conditions of a continuous food supply, so 

foraging is not eliminated for all members of the population.  However, the incidence of 

foraging behavior increased as a decrease in photosynthetic ability occurred.  In effect, 

the presence of kleptoplasts and their photosynthetic ability allow E. clarki to behave, 

even after a month of starvation, in a similar way to slugs that have been satiated.  This is 

the first report to demonstrate the role of photosynthesis in modifying the foraging 

behavior in a starved mixotrophic animal.   

 Although reducing movement to conserve energy in times of famine or starvation 

might seem like a viable strategy, many species actually increase foraging effort under 

starvation conditions (Torres et al. 2002, Jeschke and Tollrian 2005).  Nutritional state 

has long been implicated in behavioral changes of starved animals traveling more often 

and farther distances in search of food than satiated animals (Torres et al. 2002).  For 

example, starved nymphs of Podisus nigrispinus are more likely to disperse and move 

further from a starting location than satiated nymphs (Torres et al. 2002).  Other species 

such as the sea star, Leptasterias polaris, are more likely to move when starved, and are 

also more likely to orient towards a water current, increasing the likelihood of 
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encountering prey, than satiated conspecifics (Rochette et al. 1994).  Behavioral changes, 

such as consuming chemically-defended food that typically would have been avoided, 

have also been documented in starved herbivorous urchins (Hart and Chia 1990, Cronin 

and Hay 1996).  If our laboratory study predicts field behavior, then a large percentage of 

the population of E. clarki likely exhibits a delay of weeks after food sources become 

scarce before at least some animals display a behavioral change and commence foraging. 

Moreover, by not feeding slugs can remain located in a suitable habitat, in regards to 

conditions such a light availability and wave energy.  Reduced feeding activity by slugs 

which photosynthesize may also allow the algal food resources sufficient relief from 

grazing pressure to regrow.    

 One other consequence of starvation is that it may induce behavioral changes in 

an animal that increase the risk of predation.  For example, the whelk, Acanthina 

monodon, normally reduces feeding in the presence of a predator, but when starved, will 

continue to feed despite the proximity of the predator (Soto et al. 2005).  The hermit crab, 

Dardanus pedunculatus, hosts symbiotic sea anemones on its shell which protects the 

crab from predation.   However, when starved, the crab will eat its anemones, decreasing 

its camouflage and correspondingly increasing the risk of predation (Imafuku et al. 2000).  

Although E. clarki  is a relatively cryptic species, delayed foraging may still provide 

benefit from reduced exposure to predation as foraging behavior becomes less likely.   

While not specifically examined in E. clarki, predation has been demonstrated on several 

other cryptic sacoglossan species (Trowbridge 1994).  However, the advantage of 

avoiding predation in relation to foraging may be difficult to demonstrate in sacoglossans 
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because the sequestered chloroplasts  that provide metabolites also modify the slugs’ 

color and serve as a camouflage (Williams and Walker 1999).   

 Although the ability to photosynthesize delays foraging changes in slugs of E. 

clarki  starved 8 to 12 weeks, it is not clear if similar patterns occur in other 

photosynthetic animals.  Studies on corals have had mixed results.  Some species show an 

increase in feeding when light conditions, and thus photosynthesis, are reduced 

(Titlyanov et al. 2000), while others show no indication that the rate of feeding changes 

in relation to the condition of their symbiotic zooxanthellae (Piniak 2002).   However, 

corals are non-motile and thus do not engage in foraging behavior, as defined above, 

making them poor candidates for demonstrating the effects of starvation on the foraging 

of photosynthetic animals.  It is more likely that other motile, photosynthetic slug species 

will behave similarly to E. clarki.  The timing of a behavioral change will likely depend 

on the duration of photosynthesis in a given species.  Species with short-lived 

photosynthesis, such as Elysia ornata (Händeler et al. 2009), may have a rapid response 

to starvation with little delayed feeding while others like E. chlorotica (Pierce et al. 

1996), which never lose photosynthetic ability once symbiotic plastids are acquired, will 

likely exhibit little to no difference in feeding behavior between starved and fed 

individuals.   Therefore, the ability to sustain photosynthesis, which may be related to 

horizontally transferred-algal genes (Pierce et al. 2008, Pierce et al. 2009), is likely to 

determine the effect of starvation on foraging behavior. 

  



www.manaraa.com

17 

 

Conclusion:   

The onset of a behavioral shift coinciding with a decline in photosynthesis by E. 

clarki demonstrates an aspect of foraging behavior and starvation not previously 

considered.  Elysia clarki starved for 8 or 12 weeks and displaying a reduced 

photosynthetic ability increased the incidence of foraging behavior compared to 

continuously fed controls and slugs starved for 4 weeks.  Our work uniquely 

demonstrates that foraging behavior in starved photosynthetic animals is likely to remain 

unchanged while photosynthesis remains functional.  However, our experiments revealed 

that a change in foraging behavior is more likely to occur when photosynthetic activity 

declines under conditions of starvation.   
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 Figure 1.1: Electron micrograph of a digestive tubule cell of E. clarki. The digestive 
tubule cell is densely packed with sequestered chloroplasts.  C= chloroplast, N= nucleus.  
Scale bar represents 3µm.  Image taken by Nicholas Curtis.   
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Figure 1.2: Elysia clarki on the algal food source, Penicillus capitatus.  Photo reprinted 
with permission from Curtis et al. (2006) Scale bar represents 500mm.   
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Figure 1.3:  Percentage of slugs displaying feeding behavior after each starvation period.   
Data represent all slugs tested for each starvation treatment group.   

 

 

Figure 1.4:  Mean maximum quantum yield (+/- standard deviation) for slugs from each 
starvation treatment.  Letters indicate significant differences among treatments. 
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Figure 1.5.  Mean [Chl a] (+/- standard deviation) for slugs for each starvation treatment.  
Letters indicate significant differences among treatments.  Presented data were back-
transformed after a logarithmic transformation to meet assumption of homoscedasticity. 
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CHAPTER 2: 

SPATIAL AND FEEDING RELATIONSHIPS BETWEEN A 

PHOTOSYNTHETIC MARINE HERBIVORE AND ITS ALGAL HOSTS 

Introduction: 

Herbivores are a taxonomically diverse group of animals, varying greatly in size 

and occurring in a wide range of terrestrial and aquatic habitats.  These plant consumers 

range from large generalist feeders, such as elephants, which graze over large expanses, 

to tiny obligate specialists, such as aphids, which live and feed directly on host plants.  

Typically, specialist herbivores have a stronger spatial relationship with their plant food 

sources and are more likely to occur in high densities in areas with plentiful food sources 

compared to that reported for generalists (e.g., Tahvanai and Root 1972, Root 1973, 

Duffy and Hay 1994).   

In marine systems, specialist herbivores are thought to be relatively rare, in 

contrast to the many specialists, predominantly insects, found in terrestrial systems (Hay 

et al. 1990).  In fact, a subset of marine herbivores might more accurately be classified as 

omnivores (Miller and Hay 1998, Stachowicz and Hay 1999). The reasons for the paucity 

of herbivore specialists in marine settings are not clear, but may be related, in part, to a 

variety of ecological and evolutionary constraints which favor plastic life history traits 

(Warner 1997, Sotka 2005).   Both pelagic dispersal displayed by many marine 

invertebrates and the ephemeral nature of numerous marine plants may present a 

considerable challenge to the survival of a marine herbivore specialist.  Other factors 
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contributing to the lack of specialist marine herbivores may be related to benefits 

obtained from feeding on multiple plant species such that exposure to high concentrations 

of plant- produced toxins is reduced (=“non-additive toxin hypothesis”) (Freeland and 

Janzen 1974) or growth rate of a herbivore is increased by eating a diverse diet (= 

“complementary resources hypothesis”) (Pennings et al. 1993).  Several marine herbivore 

specialists have nonetheless been identified, with many exhibiting a spatial distribution 

that is strongly associated with that of their food sources (e.g., Choat and Black 1979, 

Pennings and Paul 1993, Trowbridge and Todd 2001, Sotka 2007). 

 Sacoglossan (Opisthobranch: Mollusca) sea slugs display many features typically 

associated with a feeding specialist.  They feed suctorially on siphonaceous, coenocytic 

algae by puncturing cell walls with a highly modified radular tooth and then extract the 

contents (Jensen 1993, 1994, 1997).   Most species are oligophagous (eat a few algal 

species) if not monophagous (eat only one algal species) (Jensen 1980, Händeler and 

Wägele 2007).  Often, in field settings, sacoglossans have been observed atop of their 

host algae.  Sacoglossans often are tolerant of, or immune to, defensive secondary 

metabolites produced by their host algae and, in some cases, slug species sequester these 

secondary compounds (Paul and Van Alstyne 1988, Becerro et al. 2001, Marin and Ros 

2004, Baumgartner et al. 2009).   However, the small size and cryptic coloration of sea 

slugs has limited direct in situ observation of both feeding and spatial distribution and 

therefore even basic information of slug and host algal co-occurrence is generally 

lacking. 

A striking feature of many sacoglossan herbivores is their ability to sequester 

chloroplasts from ingested algae, storing them inside of specialized cells of the digestive 
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tubules.  Slugs can maintain these chloroplasts and utilize them for photosynthesis in a 

process termed “kleptoplasty” or chloroplast symbiosis (Trench et al. 1969, Clark et al. 

1990, Pierce and Curtis 2012).  Although the chloroplasts will be replaced when new 

food is consumed, many species can maintain sequestered chloroplasts and continue 

photosynthesizing for up to many months (Gallop et al. 1980, Clark et al. 1990, Evertsen 

and Johnsen 2009, Pierce and Curtis 2012).   

The implications of kleptoplasty for slug physiology are beginning to be 

considered in discussions of feeding behavior (Middlebrooks et al. 2011).  Exposure to 

light will eventually degrade sequestered chloroplasts and photopigments (Pierce and 

Curtis 2012) and sacoglossans display a wide variety of mechanisms to reduce 

chloroplast degradation.. Some sacoglossans have morphological and behavioral shading 

of photosynthetic cells for combating photo-degradation (Jesus et al. 2010, Schmitt and 

Wägele 2011).  Other species have biochemical adaptations, such as chlorophyll 

synthesis as well as synthesis of thylakoid proteins mediated by horizontally transferred 

genes from the algal genome (Pierce et al. 2009, Schwartz et al. 2010, Pierce et al. 2012).  

Although these photosynthetic sacoglossans are ultimately dependent upon their host alga 

as a source of chloroplasts, the presence of the plastid reduces dependency on the algae 

for energetic needs.  This was demonstrated in a recent study that found that when this 

alternative energy source, provided by chloroplasts, was available to a slug via 

kleptoplasty, a corresponding reduction, but not elimination, in feeding behavior occurs 

(Middlebrooks et al. 2011).  Importantly, because of this photosynthetic capability, 

kleptoplastic sea slugs might not be expected to maintain a strong pattern of spatial 
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concurrence with their algal hosts unlike what has been commonly predicted for most 

specialist herbivores (Tahvanai and Root 1972, Root 1973).    

So, an intriguing question is whether slugs that display kleptoplasty occur on or in 

close proximity to their food. Investigating the spatial association between photosynthetic 

slugs and their food resources however requires, at the very least, that information on the 

field distribution of both slugs and their food resources.  However, information on food 

items ingested by slugs in field settings is generally lacking.  Although the extent to 

which a photosynthetic sacoglossan is found on, or near, a host alga can be documented 

via observation  in situ surveys of distributional patterns, such surveys cannot confirm 

consumption of an alga.  Other studies have discussed how animals may co-occur with 

plants or algae for other reasons such as camouflage, chemical defense, or physical 

protection from abiotic factors (Hay et al. 1990, Duffy and Hay 1994, Sotka et al. 1999, 

Sotka 2007).  In fact the algal food source of some sacoglossans has been misidentified 

when only co-occurrence of slug and algae has been used as a basis for inferring diet 

(Händeler et al. 2010). Given the unique characteristics of kleptoplastic slugs (e.g. 

photosynthesis, suctorial feeding, and specialization), assembling the most complete or 

accurate description of slug-algal feeding relationships would require documenting the 

availability of resources, as well as validating resource use in natural settings.   

 Unfortunately techniques typically available investigate animal feeding/diet 

composition have limited applicability for the study of sacoglossan slugs.  But, molecular 

techniques (DNA bar-coding), have recently been employed to identify accurately the 

species composition of diets of target organisms and thus  offer an alternative approach 

when other methods of dietary analysis prove logistically unfeasible (Symondson 2002, 
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Bourlat et al. 2008, King et al. 2008, Valentini et al. 2009, Bucklin et al. 2011).  These 

techniques have been used successfully to evaluate the diets of “difficult to observe” 

species such sea lions (Tollit et al. 2009), bats (Bohmann et al. 2011, Zeale et al. 2011), 

and deep sea invertebrates (Blankenship and Yayanos 2005).  Although previous studies 

have mostly focused on carnivores, molecular dietary analysis has also been successfully 

implemented in a limited number of studies on plant-herbivore relationships (Miller et al. 

2006, Jurado-Rivera et al. 2009, Raye et al. 2011) providing information on the 

presence/absence of ingested prey items.  However, gene sequences for potential prey 

species must be available, if DNA bar-coding is to be employed to assess rapidly diet 

composition.  Conceivably, incorporation of field data on relative abundance of food 

items with results from DNA bar-coding of ingested food could provide unique 

ecological information about actual feeding behavior.  

Here we investigate feeding ecology of a sacoglossan herbivore, Elysia clarki, 

with photosynthetic capability and document herbivore distribution relative to that of host 

plants.  Then, using results from detailed field surveys in combination with molecular 

analyses we tested: 1) Does the photosynthetic specialist herbivore E. clarki display a 

strong spatial association with its algal food; 2) Does the diet of E. clarki correspond to 

patterns of algal food occurrence; and 3) Does E. clarki display selective feeding on any 

algal taxa? 

Methods: 

Study Organism:  Elysia clarki is a kleptoplastic sea slug that can 

photosynthesize for 3-4months (Pierce et al. 2006).    Elysia clarki is endemic to the 

Florida Keys in low wave energy, near-shore habitats such as mangrove swamps, 
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mooring canals, and borrow pits.  Elysia clarki is oligophagus, feeding on several closely 

related species of algae and can sequester chloroplasts from several macroalgal species 

within a single cell (Curtis et al. 2006, Curtis et al. 2007).   While such a diet might be 

considered relatively wide for a sacoglossan, the diet is quite narrow compared to that 

characteristic of most marine herbivores (Hay et al. 1990, Curtis et al. 2006, Curtis et al. 

2007).  Elysia clarki is relatively large (up to ~3cm) and can occur in high densities, 

making visual field surveys feasible.  Importantly, E. clarki shows a reduced feeding 

response during the first month of starvation when photosynthetic rates remain high 

compared to slugs that have not been fed for 8-12 weeks and photosynthetic rate is much 

reduced (Middlebrooks et al. 2011).  Thus E. clarki may not be constrained to remain 

near its host alga especially during the first month after a feeding event.  Combined, these 

characteristics make E. clarki an excellent organism for examining the distribution and 

diet of a specialist herbivore.    

Site Descriptions:  Field investigations of herbivory by E. clarki were conducted 

at 4 sites along the Florida Keys, USA (Figure 2.1).  These sites were generally <2.0m in 

depth with good visibility and supported populations of E. clarki and diverse assemblages 

of macroalgae. But, each site had some distinguishing features which a briefly presented 

below.  

The Pit site is an old limestone quarry borrow pit, and is well protected from wave 

action by a mangrove (Rhizophora mangle) fringe with near vertical walls.  The walls are 

inhabited by a fouling community of invertebrates including anemones, tube worms, 

mussels, oysters, and sponges.  The macroalgae eaten by E. clarki are typically low in 

abundance or absent on the walls of the Pit, but other algal species, Caulerpa spp.in 
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particular, are present.  This site served as the source population for earlier studies on E. 

clarki (Clark 1994, Curtis et al. 2006, Pierce et al. 2006). 

 The Swamp site is a shallow mangrove swamp immediately seaward (North) of 

the Pit surrounded by a mangrove (R. mangle) fringe. The bottom is primarily hard 

limestone, but also contains patches of softer sediment dominated by seagrass (Halodule 

wrightii).  Most of the hard substrate is covered by a multi-species microalgal mat 

consisting primarily of diatoms, but macroalgae (primarily Penicillus spp. and Halimeda 

spp.) are also present in the area.  The mangrove jellyfish, Cassiopeia xamachana and C. 

andromeda, are found in large numbers on the substrate.   

 The Mote site is a mooring canal located on the ocean (South) side of 

Summerland Key at the Mote Tropical Research Laboratory.  Despite moderate boat 

traffic, the walls are fairly well protected from wave energy.  The canal has vertical 

limestone walls which support a fouling community of invertebrates, mostly anemones, 

tunicates, sponges, and tube worms as well as a high abundance of Caulerpa spp. and 

Halimeda spp.   

 The Salt Pond site on the ocean side of Key West is heavily fringed with 

mangroves (R. mangle) and access to the sea is limited by a narrow canal entrance and 

shallow depth.  Unlike the Swamp site, the bottom here is primarily soft sediment and 

mostly without any visible algal matt.  Seagrass (H. wrightii), mangrove jellyfish (C. 

xamachana and C. andromeda), and macroalgae (primarily Penicillus spp. and Halimeda 

spp.) are also present in the Salt Pond.   

Distribution Surveys:  At each site. 4, non-overlapping, belt transects were 

established within areas containing E. clarki.  Because the slugs can be found on steep or 
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vertically-oriented substrate, transects were oriented with the terrain.  Each transect (20m 

x 1.5m) was divided into 20 (1m x 1.5m) quadrats.  Each quadrat was visually surveyed 

on snorkel and the number of slugs in each quadrat was recorded along with the substrate 

on which each individual slug was found (e.g., bare substrate, Caulerpa etc.).  

Additionally, presence/absence of all macroalgae observed in the quadrats was recorded 

to the lowest taxonomic level possible.  All sites were sampled in either July or August 

2008 and again in July and August of 2009. One additional survey was conducted at the 

Pit in July 2010.   

Slug density was calculated for each site, along with the percentage of quadrats 

containing each algal species and the percentage of total slugs found on each substrate 

type.  Algal frequency, measured as number of quadrats containing each species per 

transect, was analyzed using PRIMER 6 statistical software (Primer E ltd, Lutton UK).  

Data were log transformed and then used to create a Bray-Curtis similarity matrix.  The 

similarity matrix was used in an analysis of similarity (ANOSIM) using site and year of 

survey as treatment factors.  A similarity percentage (SIMPER) analysis, based upon the 

similarity matrix, was then utilized to examine the contribution of each algal species to 

the algal community at each site.    

Molecular Study:  In kleptoplastic sea slugs, the diet can be determined by 

examining the species composition of sequestered chloroplasts, which can be identified 

via molecular bar-coding of chloroplast-encoded genes such as ribulose bisphosphate 

carboxylase/oxygenase (rbcL) (Curtis et al. 2006, Curtis et al. 2007) or the tufA gene 

(Händeler et al. 2010).  We used the rbcL gene here, which can be used to identify even 

closely related algal species, because it has already been successfully utilized in previous 
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work on this species (Curtis et al. 2006, Curtis et al. 2007), and because of the diversity 

of rbcL sequences available for comparison in GENBANK.  Also, because E. clarki can 

retain intact chloroplasts within its cells for several months, the molecular identity of the 

chloroplast genes can be used to verify the species of algae consumed by slugs over a 

similar time period.  

Slugs were collected for molecular analysis on the same dates as the transects 

were surveyed in 2008.  Six slugs were haphazardly collected from each site for 

molecular analysis, preserved immediately in 95% ethanol, and returned to the 

laboratory. DNA was extracted from slugs using a Phytopure DNA extraction kit (Gen 

Probe, San Diego CA USA) (Pierce et al. 2009).  The rbcL gene was amplified by 

polymerase chain reaction (PCR) from the slug  DNA using degenerate primers designed 

by hand from conserved regions determined by aligning 31 rbcL sequences from  species 

of the Chlorophyta found in GENBANK (Curtis et al. 2008) (forward primer sequence:  

5’ AAAGCNGGKGTWAAAGAYTA3’ ; reverse primer sequence:  

5’CCAACGCATARADGGTTGWGA3’).  Reaction mixtures were made with IDPROOF 

reaction buffer (IDLabs, London, ON, Canada) [2 mM Tris–HCl (pH 8.8) 1 mM KCl, 1 

mM (NH4)2 SO4, 0.01% Triton-X 100, and 0.01 mg  mL-1 BSA], 125 µM dNTP, 0.25 

mM rbcL 1, 0.25 mM rbcL 2, 1 ng  µL-1  DNA, and 0.1 U  µL-1 DNA polymerase 

(IDPROOF; IDLabs). PCR touchdown reactions were performed using a Gene Amp PCR 

2400 thermocycler (Applied Biosystems, Foster City, CA, USA) with a denaturing 

temperature of 94oC for 30 s, annealing temperature starting at 45oC for 30 s, and an 

extension temperature of 72oC for 1 min for 35 cycles, with the annealing temperature 

lowered by 0.5oC on each subsequent cycle (Curtis et al. 2006, 2008). 
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The PCR products were purified with a Qiaquick gel extraction kit (Quiagen 

Valencia, CA USA) and cloned using a Topo TA cloning kit (Invitrogen, Grand Island 

NY USA).  Ten clones per animal were then screened with PCR for inserts close in size 

to the PCR product, miniprepped using the Nucleospin Plasmid kit (Clontech, Mountain 

View, CA, USA), and the resulting purified PCR product DNA was sent to MWG 

(Huntsville, AL USA) for sequencing (Curits et al. 2006, 2008).  

To determine the sequence identity of sequestered chloroplasts, all slug rbcL 

sequences identified were aligned with all available rbcL sequences from representatives 

of the Bryopsidales, Dasycladales, and Cladophorales using Clustal X (Larkin et al. 

2007).  For all obtained sequences, the 5’ and 3’ primer sequences were discarded, and 

sequences obtained from GENBANK were edited to correspond to the remaining region, 

with all noncoding regions removed. Initially, a comprehensive Maximum Likelihood 

phylogeny was constructed from the resulting alignment using Mega 5.05 (Tamura et al. 

2011) with the following parameters:  GTR + G + I model, using 5 discrete gamma 

categories, all sites included in analysis, with 100 bootstrap replicates.  Chaetomorpha 

linum (Cladophorales) was designated as the outgroup.  Because previous analysis has 

shown a strong phylogenetic signal at the third codon position in rbcL (Curtis et al. 

2008), all codon positions were included in the analysis.  Slug sequences which showed 

moderate to strong nodal support (Bootstrap value > 50%) with specific algal species 

were then individually aligned with that particular algal species sequence by Clustal X to 

confirm species identity.   Sequences were considered to match a species if they diverged 

by 0.50 % or less from the native algal sequence.  Raw sequences were also examined to 

determine if any sequence differences could be the result of sequencing error.  A final 
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cladogram was constructed by trimming nonessential branches, and combining clades 

with identical sequences [Appendix A]. 

Field and molecular comparison:  In order to determine whether the algae 

consumed by E. clarki reflect the availability of algal food in the field at a given site, 

molecular and field data for 2008 were compared within each of the sites using the 

Sørensen similarity index (QS) (Sørensen 1948) and the following equation: 

�� � 2�� � � 

where A is the number of algal species found throughout all transects at a given site, B is 

the number of algal species identified by PCR for slugs from the same site, and C is the 

number of algal species that co-occur in both the field survey and the molecular results.  

The Sørensen similarity index ranges from 0-1 with 1 representing identical similarity 

and 0 representing complete dissimilarity.  For calculating A and C above, only algal 

species that are known food sources for E. clarki based upon results from this or other 

studies (e.g. Curtis et al. 2006) were used. Therefore, some algae (e.g. Caulerpa spp.) 

present in the survey were omitted from this calculation because E. clarki does not feed 

on them.   A high similarity score at any site indicates that the diet of E. clarki largely 

reflects the species composition of possible food items in the field for a given area.  Thus 

calculations of QS should indicate whether, even with a narrow range of possible foods, 

E. clarki’s diet matched apparent food sources.  

Selectivity:  In order to examine further the feeding selectivity of E. clarki, the 

frequency of algae in the field transects was compared to the frequency of algal 

molecular sequences obtained for each algal species at all 4 sites using 2008 data and  

utilizing Pearre’s selectivity index (C) (Pearre 1982): 
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where ad is the sum of rbcL sequences that match a given algal species (1-60 in this 

study), bd represents all other rbcL sequences, ae is the number of quadrats per site (0-80 

in this study) containing the same given alga, be is the sum of all other algal frequencies, 

and n is the sum of ad, be, bd, and ae.  The C index ranges from -1 to +1 with 0 signifying 

no selection by the slug, 1 signifying highly positive selection, and -1 signifying highly 

negative selection.   The index was tested for significance using a Χ
2 contingency table; 

indices with p<0.05 were considered significant.  As with the S�rensen index, only algae 

that are known food sources were included in the analysis.  Again  

Results:  

Field Surveys:  The density of E. clarki ranged from a low of 0.33 x m-2 in the 

Swamp in 2008 to a high of 2.92 x m-2 in the Pit in 2009 (Table 2.1).  Densities were the 

highest during the three surveys when the lowest amounts of edible algae were also 

recorded in the Pit during 2008 and 2009 and in Mote during 2008 (Table 2.1).  In these 

two sites the most frequently encountered edible alga was Acetabularia sp., an alga 

which appears, however, to be a low preference food source based on the low frequency 

with which it was consumed (see below).  However, at all sites slugs were most 

commonly found on bare substrate, except in the Salt Pond where slugs were most often 

positioned on the cap of the alga, Penicillus capitatus, (Figure 2.2).  The algae, Caulerpa 

spp., which was also a commonly encountered taxa, was the 2nd most common substrate 

occupied by slugs in both the Pit and Mote sites. 
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The species composition and frequencies of algal occurrence varied significantly 

among sites (Table 2.2, Figure 2.3, ANOSIM p=0.001, global R-0.968).   Algal 

assemblages from the Pit site were grouped together in 2008 and 2009, indicating strong 

a similarity between years, but this was not true for algal assemblages in 2010 when 

several new algal species were found in field surveys at the site.  An unusually cold 

winter in 2009 coincided with decreases in E. clarki density in 2010 at the Pit (Table 2.1).  

SIMPER analysis (Table 2.3) indicates that the species identified as the largest 

contributor to community composition across all years varied by site with Caulerpa 

mexicana the most important at the Pit, C. verticillata at Mote, and P. capitatus at the 

Swamp and Salt Pond.  Among these species, only P. capitatus is consumed by E. clarki 

(Curtis et al. 2006).  

Sequence Analysis:  The rbcL sequences from all E. clarki samples were 562 bp 

in length.  The total sequence length of aligned characters (slug and algal) was 520 bp.   

Sixty rbcL sequences were obtained from slugs at each site.  A total of 17 unique rbcL 

sequences were obtained from E. clarki in this study, with 9 sequences representing 

previously unreported algal food sources (Figure 2.4).   Interestingly, the diet of E. clarki 

varied among the sites examined in our study.   In 2008, the rbcL results indicated a wide 

variation in the algae consumed among slugs (Table 2.4 and Figure 2.4).  Specifically, in 

the Pit, E. clarki was eating four different algal species:  H. monile, H. incrassata, P. 

capitatus, and P. lamourouxii, with H. monile being the most commonly recorded rbcL 

sequence.   Slugs from the Swamp had the same rbcL sequences as slugs from the Pit.  

But, in the swamp P. capitatus was the most commonly encountered rbcL sequence.  At 

the Salt Pond site all rbcL sequences matched P. capitatus.  Molecular analysis revealed 
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that slugs from the Mote site displayed the most diverse diet (15 species) and H. 

incrassata being the most common sequence recorded.   

While the molecular analyses revealed unique information on algal consumption 

by E. clarki, a complete profile was not obtained.  Some of the rbcL sequences from 

slugs collected at the Mote site, including three Halimeda and four Bryopsis species, 

could only be identified to genus level, based upon available rbcL sequences in the 

database.  Sequences for several algal species not found before as a food of E. clarki 

including P. pyriformus, Acetabularia sp., and a sequence closest matched to 

Pseduochlorodesmis sp., a genus which has never been reported in Florida were also 

recorded at the Mote site.  However, the latter sequence diverged from 

Pseduochlorodesmis sp. by over 10% so it may represent a species not yet in the 

sequence database.  Notably the detection of Acetabularia sp. provided the first report of 

an alga of the Dasycladales clade in the diet of E. clarki. 

Field and Molecular Comparison:  Relative abundance of algal food sources, as 

determined from all field surveys combined at a site, was not a good indicator of food 

choice by E. clarki at most survey sites.  Sørenson indices, comparing similarity of the 

algae identified in field surveys to algae consumed by slugs as identified by the molecular 

analyses of the rbcL gene, were generally low at all sites ranging from 0.125 at Mote to 

0.89 at the Swamp (Table 2.5).  The exception was the swamp where a high value was 

calcualated.  The majority of low Søresnson indices suggest that field surveys of the 

presence/relative abundance of local algae are not aligned with patterns of algal species 

utilized by as food E. clarki.   However, it is possible that some smaller filamentous 

species, such as Bryopsis spp., could have been missed in visual surveys and would 
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influence Sørenson values.  When Pearre’s C index was compared across all sites Elysia 

clarki was found to display positive selectivity for algal species at all sites except the 

Swamp. Those algal species selected by slugs were not consistent across sites (Table 2.6).  

In the Pit, E. clarki showed significant positive selectivity for H. monile (Pearre’s 

C=+0.72) and H. incrassata (Pearre’s C=+0.27).  Slugs collected from Mote also 

displayed positive selectivity for H. incrassata (Pearre’s C=+0.26), while those collected 

from the Salt Pond displayed positive selectivity for P. capitatus (Pearre’s C=+0.37).   

Thus, E. clarki demonstrates selective feeding, although the slugs are not often found on 

or near algal food, and the alga selected is inconsistent between locations. 

Discussion:   

 Despite the oligotrophic diet displayed by E. clarki at most study sites, the slug 

did not have a close spatial relationship, as evidenced by Søresnson index scores and the 

location of slugs (Figure 2.2), with its algal food sources in contrast to typical patterns 

exhibited by specialist herbivores (Tahvanai and Root 1972, Root 1973).  In fact, at 3 of 

4 sites, E. clarki was most commonly found on either bare substrate (over 90% of slugs at 

the Pit) or fronds of Caulerpa spp. which, E. clarki does not eat (Curtis et al. 2006, Curtis 

et al. 2007).  In general, a considerable mismatch was detected between those food items 

which were available in the field and those ingested.  At sites supporting the highest 

densities of E. clarki, algae that are food sources were present in low abundance and, in 

most cases, slugs only fed on a small subset of potential food items.   At the Pit in 2008 

and 2009, and at Mote in 2008, the majority of the available edible algae was 

Acetabularia sp.  While this taxa is occasionally consumed by E. clarki, curiously this 

abundant alga was only detected as a food item in 2 of the 240 available sequence results.   
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Given that E. clarki can maintain high levels of photosynthetic activity for at least one 

month without feeding (Middlebrooks et al. 2011), and also continue to photosynthesize 

for 3-4 months (Pierce et al. 2006) a lack of close correspondence between distributional 

patterns of the slug and food items may only be a very short lived association.  

 One of the most surprising results from the examination of slug diets was that, in 

3 of 4 sites, common food items were missing from field surveys. Our finding that the 

two sites with the highest densities of E. clarki (The Pit and Mote) also supported the 

lowest abundance of edible algal species, may suggest that slugs are exerting top down 

grazing effects on the algae, leading to the absence of edible algal species.  Likewise the 

coordinated appearance of typically rare taxa H. incrassata at Mote and H. incrassata, P. 

capitatus, P. lamourouxii, and Bryopsis sp. at the Pit when slug populations declined may 

also be explained by high densities of E. clarki controlling the algal community via 

grazing.  While such suggestions require more detailed study, information does exist to 

support the idea that slugs can be effective grazers.  For example, several species of 

sacoglossans can reduce local algal populations (Trowbridge 1992, 2002) and grazing by 

Elysia viridis has even been suggested as a biological control agent for invasive algal 

species (Trowbridge 2004).   Alternatively, it is also possible that some E. clarki 

migrated to study site had after feeding in another area which supported a different algal 

community.  Most herbivores, faced with a depleted food supply, would either switch 

food sources (for generalist herbivores) (Martins et al. 2002), move to a new location that 

contained the target algae (Schops 2002) (for specialists), or starve.  However, even if E. 

clarki effectively grazed down algal food populations, the slugs might still be able to 

maintain high densities because of their photosynthetic capability.  Importantly under this 
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scenario, “relaxed” grazing by slugs may allow algae to recover in an area or for the slugs 

to relocate to more luxurious algal fields because of their ability to photosynthesize.   

 While the focus of this study emphasized feeding relationships between slugs and 

algae, spatial associations between slugs and algae may also be molded by non-trophic 

interactions.  Earlier studies on slugs from the Pit reported that E. crispata [slugs 

matching this description were changed to E. clarki (Pierce et al. 2006)] fed on Caulerpa 

sp. (Clark 1994), but this was later demonstrated to be incorrect (Pierce et al. 2006, Curtis 

et al. 2007).   Enigmatically, E. clarki is often found on, or near, Caulerpa spp. (Table 

2.1, Table 2.2).  This association of slug and algae may be coincidental or it may reflect 

the use of Caulerpa spp. by E. clarki as a source of camouflage or other modes of 

protection from predation.  Indeed, it is not unusual for animals to make use of algae for 

non-feeding purposes (Sotka et al. 1999) and some documented cases of predation on 

sacoglossans may support the need for refuge (Trowbridge 1994, Rogers et al. 2000).   

Yet the need for refuge is questionable, as sacoglossans often have fairly effective 

chemical defenses (Hay et al. 1990, Becerro et al. 2001, Marin and Ros 2004, 

Baumgartner et al. 2009) and some predators learn to avoid slugs (Gimenez-Casalduero 

et al. 2002).  Another possibility for E. clarki’s apparent non-feeding association with 

Caulerpa spp. is that all of the other algae in the area may have been consumed, leaving 

Caulerpa spp. as the most abundant algae remaining.  It is even possible that feeding on 

other algae by E. clarki benefits Caulerpa spp. by reducing competition between 

Caulerpa spp. and other macroalgae taxa.   

 Because many of the seemingly apparent aspects of herbivore feeding can be 

misleading (Moore 1977, Nicotri 1980), determining resource use by herbivores remains 
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challenging.  The low Sørenson indices for most sites clearly demonstrate that algal 

availability cannot be used to predict accurately the diet of E. clarki.  At only one site, the 

Swamp, was a high degree of similarity between the algae present in the habitat and algae 

consumed recorded.  These results warn of potential errors with inferring the diets of 

sacoglossans and other herbivores based on proximity to nearby plants/algae (Händeler et 

al. 2010).    

 The use of DNA bar-coding for dietary analysis not only revealed new insights 

into slug feeding behavior, but also provides strong support for using this approach in 

conjunction with field observations.  Although all algal identities were not possible to the 

level of species, as more species sequences are added to databases, this tool should 

become even more powerful.   DNA barcoding can be particularly useful for 

investigating diets of species where no prior feeding data are available.  For example, 

Händeler et al. (2010) used similar techniques with the tufA gene to decipher the diet of 7 

sacoglossan species, three of which had no dietary information available.   In our study, 

although E. clarki’s diet from one locale had already been examined by DNA bar-coding 

(Curtis et al. 2006, Curtis et al. 2007), the use of rbcL sequences to explore feeding in 

multiple sites confirmed the presence of additional algal taxa in E. clarki’s diet and 

provided a broad perspective of highly variable but specialized feeding by the slug when 

viewed across all sites.  However, just as field surveys alone may provide an inaccurate 

impression of herbivore feeding, DNA barcoding, like gut content analysis, may, in 

isolation, also offer an incomplete record of herbivore feeding because it lacks the 

context of which food sources are chosen.  
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Elysia clarki displayed differences in feeding selection among sites.  In the 

Swamp slugs were in addition to ingesting P. capitatus, a common alga in the area, slugs 

also utilized other algal food sources.  Thus, no significant positive selection was 

demonstrated by E. clarki for P. capitatus at the Swamp.  On the other hand, at the Salt 

Pond, a high abundance of P. capitatus was also recorded, but this was the only alga 

consumed by slugs at this site, thereby demonstrating a significant positive selection for 

the alga.  It is not clear why slugs fed only on P. capitatus in the Salt Pond, but it may be 

the result of a general feeding preference for P. capitatus when available, or alternatively 

could be an example of local adaption (Sotka 2005).  For example an earlier investigation 

showed that, Placida dendritica, collected from different host plants, displayed different 

feeding preferences based on the original host from which slugs were collected 

(Trowbridge 1991).  It is possible that E. clarki behaves in a similar fashion and that 

feeding selectivity could be a plastic trait for the species, which becomes fixed at the 

level of the individuals. 

 In summary, the spatial distribution of E. clarki at our study sites did not show 

strong correspondence with the plant food consumed.  Moreover, the fact many slugs 

were found instead on bare substrate suggests that the kleptoplastic nature of E. clarki 

makes the relationship between slugs their food sources a complex one.  The 

photosynthetic capability of E. clarki appears to be release the slugs from the constraint 

of having to remain near its food source, although this may only be true over the duration 

of time when chloroplasts are functional.   Our study highlights the major benefit of 

pairing of DNA dietary analysis of an animal with field surveys, especially when 

surveyed across multiple sites.  While this approach was of particular interest here 
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because of E. clarki’s photosynthetic ability, these methods should be applicable to other 

systems.  Combining dietary DNA information and field surveys, as demonstrated here, 

is currently one of the best available techniques for uncovering the complex ecological 

relationships that exist between herbivores and plants when actually observing the 

herbivore feeding is not possible.    
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Figure 2.1:  Map of study sites in the Florida Keys, USA 

 

 

 

Figure 2.2:  Total slugs surveyed at each study site at each respective time period and the 
substrate on which slugs were found. 
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Figure 2.3:  MDS plot of the log transformed algal populations of each study site 
surveyed for each time period.  Plot was 
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Figure 2.3:  MDS plot of the log transformed algal populations of each study site 
surveyed for each time period.  Plot was made using PRIMER 6 software. 

 

 

Figure 2.3:  MDS plot of the log transformed algal populations of each study site 
made using PRIMER 6 software.  
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Figure 2.4:  Maximum likelihood cladogram show the sequence identity of collected 
samples based on the rbcL gene across all sites.   
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Table 2.1:   Algae presence and slug density during field surveys.  Algae in bold are food sources for E. clarki. Numbers inside 
of parentheses represent the number of slugs found on a given substrate and the percentage of slugs found on that same 
substrate.   

Site Algae present in survey Total Slugs Slugs/m^2 Substrate Slugs Are Found On 

Pit 2008 
Acetabularia sp., Halimeda monile, Batophora 
sp., Caulerpa mexicana, C.verticillata, Udotea 
sp.  

310 2.58 
Bare Substrate (281, 90.6%), C. mexicana 
(20, 6.5%), C. verticallata (7, 2.3%), 
Acetabularia sp. (2, 0.6%) 

Swamp 
2008 

Acetabularia sp., H. monile, H. incrassata, 
Penicillus capitatus, P. lamourourxii, 

39 0.33 
Bare Substrate/Microalgal Mat (32, 
82.1%), P capitatus (7, 17.9%) 

Mote 
2008 

Acetabularia sp, H. opuntia,  C.verticillata 285 2.38 
Bare Substrate (221, 77.0%), C. verticillata 
(61, 21.3 %), Halimeda sp. (5, 1.7%) 

Salt 
Pond 
2008 

Acetabularia sp., H. monile, H. incrassata, P. 
capitatus, P. lamourourxii, Udotea sp. 

135 1.13 
Bare substrate (42, 31.1 %), P. capitatus 
(93, 68.9%) 

Pit 2009 
Acetabularia sp., Batophora sp., C. mexicana, 
C. verticillata, Udotea sp.  

350 2.92 
Bare Substrate (335, 95.4%), C. mexicana 
(6, 1.7%), C. verticillata (6, 1.7%), 
Acetabularia sp. (4, 1.1%) 

Swamp 
2009 

Acetabularia sp., H. monile, H. incrassata, P. 
capitatus, P. lamourourxii, Udotea sp. 140 1.12 

Bare substrate (136, 97.1%), P. 
capitatus(4, 2.9%) 

Mote 
2009 

Acetabularia sp, H. opuntia, H. incrassata,  
Batophora sp., C. verticillata 

116 0.97 
Bare substrate (87, 78.3%), C. 
verticillata(14, 12.6%), Halimeda sp. (10, 
9.1%) 

Salt 
Pond 
2009 

Acetabularia sp., H. monile, H. incrassata, P. 
capitatus, P. lamourourxii, Udotea sp. 

103 0.86 
Bare substrate (28, 27.2%), P. capitatus 
(72, 69.9%), H. incrassata (3, 2.9%) 

Pit 2010 
Acetabularia sp., H. monile, P. capitatus, P. 
lamourourxii, Bryopsis sp., C. verticillata, C. 
mexicana, Batophora sp., Udotea sp. 

122 1.02 
Bare substrate (119, 97.7 %), C. mexicana 
(2, 1.6%), H. incrassata (1, 0.7%) 
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Table 2.2A:  The frequency of algal species occurrence within quadrats at study sites in 
2008.  Algae in bold are confirmed food sources for E. clarki. 

Site/Year 
Algae present in 
survey  

# quadrats 
containing 

alga 

# slugs 
in 

quadrat 
w/ alga 

% slugs 
in 

quadrats 
w/ alga 

% 
quadrats 
w/ alga 

Pit 2008 Acetabularia sp. 57 211 68.1 71.25 
 Halimeda monile 1 7 2.2 1.25 
 Batophora sp. 14 26 8.4 17.5 
Caulerpa 
mexicana 50 170 54.8 62.5 
C. verticillata 35 112 36.1 43.75 
Udotea sp. 6 39 12.6 7.5 

Swamp 2008 Acetabularia sp. 5 3 7.7 6.25 
 H. monile 1 1 2.6 1.25 
H. incrassata 15 8 20.5 18.75 
 Penicillus 
capitatus 46 21 53.8 57.5 
P. lamourourxii 6 16 41 7.5 

Mote 2008 Acetabularia sp. 6 26 9.1 7.5 
H. opuntia 25 55 19.2 31.25 
C. verticillata 79 277 96.5 98.75 

Salt Pond 
2008 Acetabularia sp. 3 4 2.9 3.75 

H. incrassata 31 46 34.1 38.75 
H. monile 1 2 1.5 1.25 
P. capitatus 79 133 98.5 98.75 
P. lamourourxii 11 18 13.3 13.75 
Udotea sp. 5 14 10.4 6.25 
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Table 2.2B: The frequency of algal species occurrence within quadrats at study sites in 
2009 and 2010.  Algae in bold are confirmed food sources for E. clarki. 

Site/Year 
Algae present in 
survey  

# quadrats 
containing 

alga 

# slugs 
in 

quadrat 
w/ alga 

% slugs 
in 

quadrats 
w/ alga 

% 
quadrats 
w/ alga 

Pit 2009 Acetabularia sp. 77 329 93.8 96.25 
 Batophora sp. 3 27 7.7 3.75 
C. mexicana 65 280 79.8 81.25 
C. verticillata 50 213 60.1 62.5 
Udotea sp. 9 63 18.9 11.25 

Swamp 2009 Acetabularia sp. 44 88 62.9 55 
 H. monile 2 1 0.7 2.5 
H. incrassata 9 18 12.9 11.25 
 P. capitatus 67 123 87.9 83.75 
P. lamourourxii 17 15 10.7 21.25 

Mote 2009 Acetabularia sp. 6 7 6.3 7.5 
H. opuntia 61 88 79.3 76.25 
H. incrassata 3 6 5.4 3.75 
C. verticillata 73 109 98.2 91.25 
 Batophora sp. 1 0 0 1.25 

Salt Pond 
2009 Acetabularia sp. 2 6 5.8 2.5 

H. incrassata 16 19 18.4 20 
H. monile 2 0 0 2.5 
P. capitatus 78 103 100 97.5 
P. lamourourxii 14 27 26.2 17.5 
Udotea sp. 5 4 3.9 6.25 

Pit 2010 Acetabularia sp. 25 53 41.4 31.25 
 H. incrassata 16 26 20.3 20 
 Batophora sp. 1 6 4.7 1.25 
C. mexicana 71 106 82.8 88.75 
C. verticillata 4 5 3.9 5 
Bryopsis sp. 5 2 1.6 6.25 
P. lamourourxii 2 7 5.4 2.5 
P. capitatus 16 34 26.6 20 
Udotea sp. 4 6 2.6 5 
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Table 2.3: Algal species contribution to community composition at each study site as 
revealed by similarity analysis (SIMPER).  Analysis was completed using PRIMER 6 
software.   

Algae 
Contribution 

% 
Cumulative 

% 

Pit     
Caulerpa 
mexicana 40.7 40.7 
Acetabularia sp. 31.93 72.63 
C. verticillata 17.49 90.12 

Swamp     
Penicillus 
capitatus 60.55 60.55 
Acetabularia sp. 18.18 78.73 
Halimeda 
incrassata 16.16 94.89 

Mote     
C. verticillata 94.51 94.51 

Salt Pond     
P. capitatus 49.17 49.17 
H. incrassata 27.23 76.4 
P. lamourourxii 13.82 90.22 
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Table 2.4: Dietary sequences confirmed for Elysia clarki via molecular analysis of the 
rbcL gene at each study site for slugs collected in 2008. Numbers is parenthesis represent 
the proportion of rbcL sequences that matched each algal species.   

Site Algae present in rbcL sequences 

Pit 
Penicillus capitatus (1/60) , P. lamourouxii (2/60), Halimeda 
monile (42/60), H. incrassata (15/60) 

Swamp 
P. capitatus (42/60), P. lamourouxii (2/60), H. incrassata 
(15/60), H. monile (1/60) 

Mote 

Pseudochlorodesmis sp. (8/60), P. pyriformus (8/60), 
Acetabularia sp. (2/60), Bryopsis pennatula (1/60), B. pennata 
(1/60), Bryopsis sp. 1 (1/60), Bryopsis sp. 2 (1/60), Bryopsis sp. 
3 (1/60),  Bryopsis sp. 4 (1/60), H. monile (10/60), Halimeda 
sp. 1 (1/60), Halimeda sp. 2(8/60), Halimeda sp. 3 (1/60),H. 
incrassata (15/60), Derbesia  sp. (1/60),  

Salt Pond P. capitatus (60/60) 
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Table 2.5: Comparison of potential food sources available to Elysia clarki at each site to algae confirmed as a food source via 
DNA barcoding.  Algae in bold indicate species that were confirmed via DNA barcoding, but not found during visual surveys.   

Site 
Edible algae present in 
survey 

Algae present in rbcL sequences 
Algae eaten 
but not in 
survey 

Algae in 
survey but 
not eaten 

Sørensen 
Index 

Pit 
Acetabularia sp., Halimeda 
monile 

Penicillus capitatus, P. 
lamourouxii, H. monile, H. 
incrassata 

3 1 0.33 

Swamp 
Acetabularia sp., H. monile, 
H. incrassata, P. capitatus, 
P. lamourourxii, 

P. capitatus, P. lamourouxii, H. 
incrassata, H. monile 

0 1 0.89 

Mote Acetabularia sp, H. opuntia 

Pseudochlorodesmis sp., P. 
pyriformus, Acetabularia sp., 
Bryopsis pennatula, B. pennata, 
Bryopsis spp., Halimeda spp., H. 
monile, H. incrassata, Derbesia sp.,  

14 1 0.125 

Salt Pond 
Acetabularia sp., H. monile, 
H. incrassata, P. capitatus, 
P. lamourourxii, 

P. capitatus 0 4 0.33 
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Table 2.6: Sequence frequency, environmental frenquency and Pearre’s C selectivity 
indices for each algal species confirmed via rbcL DNA barcoding for Elysia clarki at 
each of the study sites.  Only significant (p<0.05) Pearre C values are reported. 

Algae  
Sequence 
Frequency 

Environment  
Pearre's 

C 

Pit    
 Penicillus capitatus 1 0 NS 
P. lamourourxii 2 0 NS 
 Halimeda monile 45 1 +0.72 

H. incrassata 12 0 +0.27 

Swamp    
 P. capitatus 42 46 NS 
P. lamourourxii 2 6 NS 

H. incrassata 15 15 NS 
 H. monile 1 1 NS 

Mote    
H. incrassata 15 0 +0.26 

 H. monile 10 0 NS 
Halimeda sp. 1 1 0 NS 
Halimeda sp. 2 8 0 NS 
Halimeda sp. 3 1 0 NS 

P. pyriformus 8 0 NS 
Pseudochlorodesmis sp. 8 0 NS 
Bryopsis pennata 1 0 NS 
B. penatula 1 0 NS 

Bryopsis sp. 1 1 0 NS 
Bryopsis sp. 2 1 0 NS 
Bryopsis sp. 3 1 0 NS 
Bryopsis sp. 4 1 0 NS 

Acetabularia sp. 2 6 NS 
Derbesia  sp.  1 0 NS 

Salt Pond    
 Penicillus capitatus 60 79 +0.37 
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CHAPTER 3: 

ELYSIA CLARKI PROLONGS PHOTOSYNTHESIS BY SYNTHESIZING 

CHLOROPHYLL (CHL) A AND B 

 

Introduction: 

Autotrophy is not a defining characteristic of multi-cellular animals, although a 

variety of heterotrophic animal species obtain substantial nutrition from photosynthesis 

(Stoecker et al. 1989, Venn et al. 2008), usually from semi-obligate symbiotic 

relationships with zooxanthellae or zoochlorellae.   Alternatively kleptoplasty, another 

mechanism of animal photosynthesis, is utilized by some species of sacoglossan sea slugs 

(Opisthobranch, Mollusca) (Greene 1970, Greene and Muscatin1972, Clark et al. 1990, 

Pierce and Curtis 2012).  These slugs sequester chloroplasts from their algal food sources 

inside specialized cells of their digestive tubules.  The captive chloroplasts continue to 

photosynthesize and provide the slugs with at least a supplemental energy source (Trench 

et al. 1969, Pierce and Curtis 2012). A few slug species can survive for months on the 

products of photosynthesis alone (Pierce and Curtis 2012).  The benefits of kleptoplasty 

have yet to be fully explained, but should have implications for allocations of energy to 

food acquisition. As a consequence of their photosynthetic ability, in contrast to 

organisms that must feed continuously, kleptoplastic slugs may be more able to maintain 

populations even under low food or famine conditions (Gimènez-Casalduero and 
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Muniain 2008) and spend less time foraging when food resources are abundant (Marin 

and Ros 1993, Middlebrooks et al. 2011).   

Although several sacoglossan species are kleptoplastic, the intensity and duration 

of photosynthesis is quite variable among species (Clark et al. 1990, Händeler et al. 2009, 

Pierce and Curtis 2012) ranging from several days or less to over 10 months in the case 

of Elysia chlorotica (Clark et al. 1990, Mondy and Pierce 2003).   In the slugs with long 

term photosynthesis a maintenance mechanism is necessary to offset the organellar 

damage caused by light harvesting and subsequent electron transport.  Although energy 

from sunlight is a required component of photosynthesis, light exposure degrades both 

thylakoid structure and photopigments, especially chlorophyll (Chl).  Some slug species 

use mechanical or behavioral adaptations to simply shade the symbiotic plastids to slow 

damage caused by exposure to ultraviolet light (Jesus et al. 2010, Schmitt and Wägele 

2011).  However, a few other slug species have partially integrated the symbiotic plastids 

into the host cell biology and synthesize some of the chloroplast proteins and pigments 

consumed during photosynthesis (Pierce et al. 2009).   For example, Elysia chlorotica 

synthesizes Chl a as well as several proteins in the light harvesting complex (Pierce et al. 

2009).  This surprising capability is due to the presence and function of several 

horizontally-transferred nuclear genes from its algal food source present in the slugs’ 

genome (Pierce et al. 2007, Pierce et al. 2009, Schwartz et al. 2010, Pierce et al. 2012).  

Once it has fed and obtained chloroplasts, E. chlorotica is able to survive and complete 

its life cycle exclusively using photosynthesis (West 1979).  While the biochemical 

mechanisms for maintaining kleptoplasty in E. chlorotica are beginning to be understood, 

the mechanisms used by other slug species which photosynthesize for lesser, but still 
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impressively long (months) periods of time, remain unclear.  Examining the mechanisms 

employed by this latter group with intermediate term kleptoplasts is critical to understand 

the evolution of kleptoplasty and evaluate its physiological consequences for 

photosynthetic animals.  

Elysia clarki is a kleptoplastic sacoglossan which is able to photosynthesize for 

over 3 months of starvation (Pierce et al. 2006), a duration that falls in the middle of the 

time course of known photosynthetic slugs.  This species is unusual in that it is capable of 

sequestering chloroplasts from several algal species within the same digestive cell (Curtis 

et al. 2006, Curtis et al. 2007).  However, after about two months of starvation both 

photosynthetic activity and [Chl a] significantly decline, while feeding behavior increases 

(Middlebrooks et al. 2011).  Although not as long as E. chlorotica, the duration of the E. 

clarki association suggests that some plastid maintenance may be present in the host cell.  

Therefore, we investigated whether or not E. clarki is able to synthesize Chl and, if so, 

does synthesis continue when slugs’ photosynthetic activity declines.  We found that 

recently collected E. clarki synthesizes Chl a and Chl b, but that slugs starved for a 

prolonged duration were not able to synthesize either type of Chl.  

Methods: 

Animals:  Specimens of E. clarki were collected from a borrow pit on Grassy 

Key, FL, USA (Middlebrooks et al. 2011) and then transported to the laboratory in 

Tampa, FL, USA where they were housed in aquaria in artificial seawater (Instant Ocean) 

(1000 mosm) (ASW) without access to algal food.  They were kept at room temperature 

(~23°C) and on a 14/10h light/dark cycle under cool white florescent lights.  One group 

of slugs was starved for 2 weeks, to ensure their guts were empty, before use in the 
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experiment.  A second group of slugs was starved for 14 weeks before use, by which time 

photosynthetic activity significantly declines (Middlebrooks et al. 2011).   

Chlorophyll synthesis:  At the end of a 10h dark cycle, the 2 week starved slugs 

were exposed to a radioactive Chl precursor, 15µCi 14C aminolevulinic acid (ALA) (14C-

4, 55 µCi/mmol, American Radiolabeled Chemical, St.Louis, MO) in ASW for 2 h in the 

dark at constant temperature (25o C), in an agitator.  Then, the slugs, still in the 14C ALA 

in ASW, were exposed to light from two 75 W halogen flood lamps for the next 22 hours 

in the agitator (Pierce et al. 2009).  Afterwards Chl was immediately extracted (see 

below).  Slugs from the 14 week starvation group were treated similarly to the two week 

group except that aeration of the incubation medium had to be added during the 22 h of 

light exposure.  Interestingly, preliminary experiments found that the starved slugs, which 

have very reduced photosynthetic ability (Middlebrooks et al. 2011), would not survive 

the procedure without additional aeration of the small volume (20ml) of medium used.   

 After the 22 h incubation, Chl a was extracted on ice in the dark by homogenizing 

slugs in HPLC grade acetone and then centrifuging (~12,000x G) the homogenate.  The 

supernatants were kept at -20°C in the dark until chromatography to prevent photo-

degradation of Chl a.  Then Chl a was purified from the acetone supernatant using High 

Performance Liquid Chromatography (HPLC) (System Gold, Beckman Coulter, 

Fullerton, CA) on two C18 columns (Microsorb 100-3, 100x4.6mm Varian, Lake Forest 

CA , and Vydac 201 TP 105x4.6mm, Vydac, Hespire, CA) connected in series, with a 

mobile phase starting with 80%MeOH: 20% NH4CH3COOH (0.5 M, pH 7.2) changing to 

80% MeOH : 20% (Pinckney et al. 1998). NH4CH3COOH was added to all samples as an 

ion pair.  Detection was done at 438 nm, the wavelength that Chl absorbs (Joyard et al. 
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1987).  This protocol successfully separates Chl a from its metabolites as well as other 

photopigments (Pinckney et al. 1998).   

 Fractions were collected from the analytical column eluent as it exited the 

detector, starting at 40 min from injection until the end of the end of run (50 min)-the 

region where the Chl elutes (Pinckney 1998-see also Figure 3.1), at 12 sec intervals.  

Since we were limited to using an analytical HPLC and, as result, could only inject 50µl 

per run without overloading the columns, multiple runs of each homogenate had to be 

pooled to obtain sufficient radioactivity to measure.  The collected fractions from each 

run were pooled, dried under a stream of N2, dissolved in acetone and added to a 

scintillation cocktail (Ready SafeTM Beckman Coulter, Fullerton, CA).  The radioactivity 

in the fractions was then determined using a scintillation counter (LS6500 Multipurpose 

Scintillation Counter, Beckman Coulter, Fullerton, CA ).  Finally to eliminate any 

quenching effect caused by Chl a, samples were spiked with 2000 cpm 14C ALA and the 

data converted to dpm [(Pierce et al. 2009) modified from (Pinckney et al. 1998)].  

Results: 

Comparison of the HPLC chromatograms of the acetone extracts of E. clarki that 

had been starved for 2 weeks with that of a standard mixture of a variety of plant 

pigments (Pinckney et al. 1998, Pierce et al. 2009), as well as with an extract from 

Penicillus capitatus, one of the E. clarki plastid sources, (Fig.3.1) indicated the presence 

of 2 prominent peaks that exactly co-eluted with the position of Chl a and Chl b (compare 

Fig. 3.1, Fig. 3.2).  The corresponding pattern of radioactivity in the post column eluent 

from the same slug extract indicated activity peaks co-eluting with the Chl a and Chl b 

peaks (Fig. 3.2).  In this separation protocol, C14-ALA elutes in the column void volume 
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and radioactivity in the Chl a fraction is shifted downsteam to the elution position of 

phaeophytin, following the photoconversion of Chl a into phaeophytin, indicating that the 

radioactive label is in Chl a, not just co-eluting (Pierce et al. 2009). Therefore, the 2 week 

starved E. clarki are synthesizing both Chl a and Chl b.  However, chromatography of the 

extracts of E. clarki after 14 weeks of starvation revealed no detectable Chl a and b peaks 

(Fig. 3.3).  Radioactivity in the eluent did not rise above background levels in any 

fraction (Fig. 3.3).  So for the slugs subjected to the the longer term starvation, Chl a and 

Chl b were depleted and its synthesis had ceased. 

Discussion: 

 During the early stages of starvation, E. clarki synthesizes Chl a and Chl b.  The 

synthesis of Chl within an animal is unusual, but the months long photosynthesis by the 

symbiotic plastid could not be accomplished unless Chl was somehow replaced.   After 

some period of starvation, synthesis of Chl ceases.  The longer time point we tested, 14 

weeks of starvation, coincides with a significant reduction in both photosynthesis and Chl 

concentration in slugs (Middlebrooks et al. 2011).   At present, it is not clear why Chl 

synthesis stops in E. clarki by 14 weeks.  Although the decline of photosynthetic activity 

in E. clarki suggests that the decline in Chl synthesis may be responsible for the loss of 

photosynthetic activity, other aspects of photo-degradation, such as thylakoid 

degradation, could be the cause for the loss of photosynthesis and  production of Chl a 

and Chl b.  

The mechanism that is used for Chl synthesis in E. clarki is unclear.  One 

possibility is that during ingestion of the plastid, a sufficient amount of precursors are 

also taken up, which accordingly would allow for Chl synthesis to persist for some period 
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of time.  While this is possible, it seems unlikely that sufficient precursors to last for 

months of photosynthesis would be present in the slugs.  Another possibility is that the 

slug digestive cell provides the precursors using algal biochemistry provided by 

horizontal gene transfer between the source species and the slug.  A handful of non-

botanical species are able to produce photo-pigments using genes horizontally transferred 

from various fungi or algae.  For example, the aphid, Acyrthosiphon pisum, is able to 

synthesize carotenoids using genes transferred into its genome from a fungus (Moran and 

Jarvik 2010), although these pigments are not involved in photosynthesis in the insect.  

But, several sacoglossans possess pigments used for photo-regulation.  Elysia viridis 

synthesizes xanthophyll, but not Chl a (Trench et al. 1973).  Elysia timida also has an 

active xanthophyll cycle (Jesus et al. 2010), although gene transfer has not been 

documented in this species (Wägele et al. 2011).  Elysia chlorotica synthesizes Chl a 

using horizontally transferred algal genes present in the host cell genome (Pierce et al. 

2009, Pierce et al. 2012).  So, similar to E. chlorotica, the synthesis of Chl a by E. clarki 

may suggest the presence of horizontally transferred genes.  However, the ultimate failure 

of Chl synthesis may indicate that E. clarki possesses fewer transferred genes than E. 

chlorotica and may therefore lack a gene critical for long term maintenance of Chl 

synthesis, or that another mechanism is responsible for the synthesis.   Complicating the 

issue is that, unlike E. chlorotica which feeds exclusively on Vaucheria litorea, E. clarki 

feeds on and sequesters chloroplasts from multiple algal species (Curtis et al. 2006, 

Curtis et al. 2007) so the underlying biochemistry and its specificity in E. clarki may play 

an important role in the longevity of chloroplasts from particular algal species. 
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 Maintaining functional chloroplasts is a unique challenge for kleptoplastic 

animals.  Without a maintenance mechanism exposure to light will rapidly degrade Chl 

and chloroplast structure.  Many sacoglossan species with short term kleptoplasty simply 

turn over the plastids, slowly digesting them, and replace them by relatively continuous 

feeding (Pierce and Curtis 2012).  Even slugs capable of long term photosynthesis will 

replace most of their sequestered chloroplasts when food is available (Gallop et al. 1980, 

Evertsen and Johnsen 2009, Pierce and Curtis 2012).  However, by synthesizing Chl and 

other plastid proteins some sacoglossans are able to prolong the duration of 

photosynthesis.  Elysia chlorotica, which is able to complete its entire 10 month life cycle 

using only photosynthesis (West 1979), synthesizes Chl and a variety of plastid proteins 

(Pierce et al. 2009).   Elysia crispata, closely related to E. clarki (Pierce et al. 2006), 

synthesizes several chloroplast proteins, but not Chl (Trench and Ohlhorst 1976).   Other 

sacoglossan species use behavioral and morphological adaptations to reduce photo-

degradation of sequestered chloroplasts.  For example, E. timida has opaque parapodia 

with which it shades the cells that contain chloroplasts when exposed to bright light.  This 

shading behavior starts following starvation, when plastid turnover declines and the 

slugs’ dependence on photosynthesis increases (Jesus et al. 2010, Schmitt and Wägele 

2011).  

 Regardless of the mechanism, extending the duration of sequestered chloroplast 

function has clear benefits to the host.  As long as photosynthesis continues, kleptoplasty 

aids sacoglossans by decreasing mortality during times of famine (Marin and Ros 1993, 

Gimènez-Casalduero and Muniain 2008).  Also it follows that, kleptoplastic slugs may 

not need to feed as frequently as non-photosynthetic animals.  For example, 
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photosynthetically capable E. clarki are less likely to feed than conspecifics with lower 

photosynthetic-activity (Middlebrooks et al. 2011).  Additionally, reducing foraging 

behavior may, in turn, reduce predation risk (Vadas et al. 1994).  Sequestered 

chloroplasts may also provide camouflage, whether photosynthetic or not (Clark et al. 

1990, Wägele and Klussmann-Kolb 2005).   

 Finally, our experiment produced some unanticipated results suggesting that E. 

clarki benefitted from the O2 produced as a byproduct of photosynthesis, in addition to 

the benefits of photosynthetic carbon fixation.  In preliminary experiments, the slugs 

starved for 14 weeks all died during the overnight incubation process (see Methods).  

However, the starved slugs provided with aeration all survived, suggesting that anoxia in 

the small volume (20ml) of incubation medium may have been the cause of death.   In 

contrast, all of the slugs starved for 2 weeks survived without aeration perhaps due to O2 

produced during photosynthesis.  Although not thoroughly tested here, these results 

suggest that, in addition to the central role of photosynthesis in energy metabolism, 

kleptoplastic O2 production by the slug can increase tolerance of low oxygen conditions 

for E. clarki and other sacoglossans, (Taylor 1971, Trench et al. 1972, Gibson et al. 

1986). 

 In conclusion, clearly E. clarki synthesizes Chl for some time period during 

starvation.  This is the first demonstration of Chl synthesis by a sacoglossan with a 3-4 

month kleptoplasty duration.  The capacity to synthesize Chl likely increases the 

longevity of chloroplast function in E. clarki, which, in turn, reduces the slugs’ reliance 

on a continuous supply of algal food.  However, the mechanism responsible for the slugs’ 
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ability to synthesize Chl is unknown and may be complex in E. clarki as a result of this 

slug’s ability to sequester symbiotic plastids from several algal species.  
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Figure 3.1:  Typical HPLC chromatogram at 438nm of an acetone extract of Penicillus capitatus, 
one of the chloroplast sources of E. clarki.  The peaks marked “a” and “b” label the peaks of Chl 
a and Chl b, respectively, in chromatograms of authentic pigments (Pierce et al. 2009 Pinckney et 
al. 1998) .  
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Figure 3.2:  A) Typical HPLC chromatogram at 438 nm of the Chl eluting region of an acetone 
extract from a 2 week starved E. clarki. Lower case “a” and “b” represent the peaks of Chl a and 
Chl b respectively.  B) Radiation counts in the column effluent from the same region of the 
chromatogram in A.  The radiation peaks “a” and “b” exactly co-elute with the Chl a and Chl b 
peaks, indicating incorporation of radioactivity into both compounds. 
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Figure 3.3:  A) Typical HPLC chromatogram at 438 nm the Chl eluting region of an acetone 
extract from a 14 week starved E. clarki. B) Radiation counts in the column effluent from the 
same region of the chromatogram in A.  The lack of Chl peaks and corresponding radioactivity 
demonstrate that E. clarki is no longer synthesizing Chl by this point in starvation.   
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Appendix A:  Algal Sequence Identities from Chapter 2 

 

Sequence Site Best Algal Match Group 
M1A1 Mote P. pyriformis A 
M1A10 Mote Halimeda sp. 2 
M1A2 Mote Halimeda sp. 2 
M1A3 Mote Halimeda monile D 
M1A4 Mote Halimeda incrassata E 
M1A5 Mote P. pyriformis A 
M1A6 Mote Halimeda sp. 2 
M1A7 Mote Bryopsis pennata  
M1A8 Mote Derbesia sp. 
M1A9 Mote Halimeda sp. 2 
M2A10 Mote Halimeda incrassata E 
M2A10 Mote P. pyriformis A 
M2A2 Mote Pseudochlorodesmis C 
M2A3 Mote Halimeda incrassata E 
M2A4 Mote Pseudochlorodesmis C 
M2A5 Mote Bryopsis sp. 4 
M2A6 Mote Halimeda sp. 1 
M2A7 Mote Bryopsis Sp. 2 
M2A8 Mote Halimeda sp. 2 
M2A9 Mote Bryopsis pennatula 
M3A10 Mote Halimeda incrassata E 
M3A2 Mote Halimeda incrassata E 
M3A3 Mote P. pyriformis A 
M3A4 Mote Halimeda incrassata E 
M3A5 Mote Halimeda incrassata E 
M3A6 Mote Halimeda sp. 3 
M3A7 Mote Halimeda incrassata E 
M3A8 Mote Halimeda monile D 
M3A9 Mote Halimeda sp. 2 
M3C1 Mote Pseudochlorodesmis C 
M3C10 Mote Halimeda sp. 2 
M3C2 Mote Halimeda sp. 2 
M3C3 Mote Acetabularia sp 
M3C4 Mote Pseudochlorodesmis C 
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M3C5 Mote Pseudochlorodesmis C 
M3C6 Mote Pseudochlorodesmis C 
M3C7 Mote Halimeda incrassata E 
M3C7 Mote Halimeda incrassata E 
M3C8 Mote Bryopsis Sp. 3 
M3C9 Mote Acetabularia sp 
M4A1 Mote Halimeda incrassata E 
M4A10 Mote P. pyriformis A 
M4A2 Mote Halimeda monile D 
M4A3 Mote Halimeda monile D 
M4A4 Mote Halimeda incrassata E 
M4A5 Mote Halimeda incrassata E 
M4A6 Mote Bryopsis Sp. 1 
M4A7 Mote Halimeda monile D 
M4A8 Mote Pseudochlorodesmis C 
M4A9 Mote P. pyriformis A 
M4B1 Mote P. Pyriformis A 
M4B19 Mote P. pyriformis A 
M4B2 Mote Halimeda monile D 
M4B3 Mote Halimeda monile D 
M4B4 Mote Halimeda incrassata E 
M4B5 Mote Halimeda monile D 
M4B6 Mote Pseudochlorodesmis C 
M4B7 Mote P. pyriformis A 
M4B8 Mote Halimeda incrassata E 
M4B9 Mote Halimeda monile D 
P2B1 Pit Halimeda monile D 
P2B10 Pit Halimeda monile D 
P2B2 Pit Halimeda monile D 
P2B3 Pit Halimeda monile D 
P2B4 Pit Halimeda monile D 
P2B5 Pit Halimeda monile D 
P2B6 Pit Halimeda monile D 
P2B7 Pit Halimeda monile D 
P2B8 Pit Halimeda monile D 
P2B9 Pit Halimeda monile D 
P4A1 Pit Halimeda monile D 
P4A10 Pit Halimeda monile D 
P4A2 Pit Halimeda incrassata E 
P4A3 Pit Halimeda monile D 
P4A4 Pit Halimeda monile D 
P4A5 Pit Halimeda incrassata E 
P4A6 Pit Halimeda incrassata E 
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P4A7 Pit Halimeda monile D 
P4A8 Pit Halimeda incrassata E 
P4A9 Pit Halimeda incrassata E 
P4B1 Pit Halimeda monile D 
P4B10 Pit P. lamourouxii 
P4B2 Pit Halimeda monile D 
P4B3 Pit Halimeda monile D 
P4B4 Pit Halimeda monile D 
P4B5 Pit P. lamourouxii 
P4B6 Pit Halimeda incrassata E 
P4B7 Pit Halimeda monile D 
P4B8 Pit Halimeda monile D 
P4B9 Pit Halimeda monile D 
P4C1 Pit Halimeda monile D 
P4C10 Pit Halimeda monile D 
P4C2 Pit Halimeda monile D 
P4C3 Pit Halimeda monile D 
P4C4 Pit Halimeda monile D 
P4C5 Pit Halimeda monile D 
P4C6 Pit Halimeda monile D 
P4C7 Pit Halimeda monile D 
P4C8 Pit P. capitatus B 
P4C9 Pit Halimeda incrassata E 
P4D1 Pit Halimeda incrassata E 
P4D10 Pit Halimeda incrassata E 
P4D2 Pit Halimeda monile D 
P4D3 Pit Halimeda incrassata E 
P4D4 Pit Halimeda monile D 
P4D5 Pit Halimeda monile D 
P4D6 Pit Halimeda incrassata E 
P4D7 Pit Halimeda monile D 
P4D8 Pit Halimeda incrassata E 
P4D9 Pit Halimeda monile D 
P5A1 Pit Halimeda monile D 
P5A10 Pit Halimeda monile D 
P5A2 Pit Halimeda monile D 
P5A3 Pit Halimeda monile D 
P5A4 Pit Halimeda monile D 
P5A5 Pit Halimeda monile D 
P5A6 Pit Halimeda monile D 
P5A7 Pit Halimeda monile D 
P5A8 Pit Halimeda monile D 
P5A9 Pit Halimeda monile D 



www.manaraa.com

80 
 

S2A1 Salt Pond P. capitatus B 
S2A10 Salt Pond P. capitatus B 
S2A2 Salt Pond P. capitatus B 
S2A3 Salt Pond P. capitatus B 
S2A4 Salt Pond P. capitatus B 
S2A5 Salt Pond P. capitatus B 
S2A6 Salt Pond P. capitatus B 
S2A7 Salt Pond P. capitatus B 
S2A8 Salt Pond P. capitatus B 
S2A9 Salt Pond P. capitatus B 
S2B1 Salt Pond P. capitatus B 
S2B10 Salt Pond P. capitatus B 
S2B2 Salt Pond P. capitatus B 
S2B3 Salt Pond P. capitatus B 
S2B4 Salt Pond P. capitatus B 
S2B5 Salt Pond P. capitatus B 
S2B6 Salt Pond P. capitatus B 
S2B7 Salt Pond P. capitatus B 
S2B8 Salt Pond P. capitatus B 
S2B9 Salt Pond P. capitatus B 
S2E1 Salt Pond P. capitatus B 
S2E10 Salt Pond P. capitatus B 
S2E2 Salt Pond P. capitatus B 
S2E3 Salt Pond P. capitatus B 
S2E4 Salt Pond P. capitatus B 
S2E5 Salt Pond P. capitatus B 
S2E6 Salt Pond P. capitatus B 
S2E7 Salt Pond P. capitatus B 
S2E8 Salt Pond P. capitatus B 
S2E9 Salt Pond P. capitatus B 
S3B1 Salt Pond P. capitatus B 
S3B10 Salt Pond P. capitatus B 
S3B2 Salt Pond P. capitatus B 
S3B3 Salt Pond P. capitatus B 
S3B4 Salt Pond P. capitatus B 
S3B5 Salt Pond P. capitatus B 
S3B6 Salt Pond P. capitatus B 
S3B7 Salt Pond P. capitatus B 
S3B8 Salt Pond P. capitatus B 
S3B9 Salt Pond P. capitatus B 
S4A1 Salt Pond P. capitatus B 
S4A10 Salt Pond P. capitatus B 
S4A2 Salt Pond P. capitatus B 
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S4A3 Salt Pond P. capitatus B 
S4A4 Salt Pond P. capitatus B 
S4A5 Salt Pond P. capitatus B 
S4A6 Salt Pond P. capitatus B 
S4A7 Salt Pond P. capitatus B 
S4A8 Salt Pond P. capitatus B 
S4A9 Salt Pond P. capitatus B 
S4C1 Salt Pond P. capitatus B 
S4C10 Salt Pond P. capitatus B 
S4C2 Salt Pond P. capitatus B 
S4C3 Salt Pond P. capitatus B 
S4C4 Salt Pond P. capitatus B 
S4C5 Salt Pond P. capitatus B 
S4C6 Salt Pond P. capitatus B 
S4C7 Salt Pond P. capitatus B 
S4C8 Salt Pond P. capitatus B 
S4C9 Salt Pond P. capitatus B 
W1A1 Swamp P. capitatus B 
W1A10 Swamp P. capitatus B 
W1A2 Swamp P. capitatus B 
W1A3 Swamp P. capitatus B 
W1A4 Swamp P. capitatus B 
W1A5 Swamp P. capitatus B 
W1A6 Swamp P. capitatus B 
W1A7 Swamp Halimeda incrassata E 
W1A8 Swamp Halimeda incrassata E 
W1A9 Swamp P. capitatus B 
W1D1 Swamp Halimeda incrassata E 
W1D10 Swamp Halimeda incrassata E 
W1D2 Swamp Halimeda incrassata E 
W1D3 Swamp Halimeda incrassata E 
W1D5 Swamp Halimeda incrassata E 
W1D4 Swamp Halimeda incrassata E 
W1D6 Swamp P. capitatus B 
W1D7 Swamp Halimeda incrassata E 
W1D8 Swamp P. capitatus B 
W1D9 Swamp  P. lamourouxii 
W1E1 Swamp P. capitatus B 
W1E10 Swamp P. capitatus B 
W1E2 Swamp P. capitatus B 
W1E3 Swamp P. capitatus B 
W1E4 Swamp P. capitatus B 
W1E5 Swamp Halimeda monile D 
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W1E6 Swamp P. capitatus B 
W1E7 Swamp P. capitatus B 
W1E8 Swamp P. capitatus B 
W1E9 Swamp P. capitatus B 
W3A1 Swamp P. capitatus B 
W3A10 Swamp P. capitatus B 
W3A2 Swamp P. capitatus B 
W3A3 Swamp Halimeda incrassata E 
W3A4 Swamp P. capitatus B 
W3A5 Swamp Halimeda incrassata E 
W3A6 Swamp P. capitatus B 
W3A7 Swamp P. capitatus B 
W3A8 Swamp P. capitatus B 
W3A9 Swamp P. capitatus B 
W3B1 Swamp P. capitatus B 
W3B10 Swamp Halimeda incrassata E 
W3B2 Swamp P. capitatus B 
W3B3 Swamp Halimeda incrassata E 
W3B4 Swamp Halimeda incrassata E 
W3B5 Swamp P. capitatus B 
W3B6 Swamp P. capitatus B 
W3B7 Swamp P. capitatus B 
W3B8 Swamp P. capitatus B 
W3B9 Swamp Halimeda incrassata E 
W4A1 Swamp P. capitatus B 
W4A10 Swamp P. capitatus B 
W4A2 Swamp P. capitatus B 
W4A3 Swamp P. capitatus B 
W4A4 Swamp P. capitatus B 
W4A5 Swamp P. capitatus B 
W4A6 Swamp P. capitatus B 
W4A7 Swamp P. capitatus B 
W4A8 Swamp P. capitatus B 
W4A9 Swamp  P. lamourouxii 
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Appendix B:  Permissions from PLOS1 
 

Chapter 1 contains work by Middlebrooks et al (2011) previously published in PLOS1.  
Below is the copyright information from the publisher: 
 

Open-Access License 

No Permission Required 

 

The Public Library of Science (PLoS) applies the Creative Commons Attribution 

License (CCAL) to all works we publish (read the human-readable summary or the full 

license legal code). Under the CCAL, authors retain ownership of the copyright for their 

article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or 

copy articles in PLoS journals, so long as the original authors and source are cited. No 

permission is required from the authors or the publishers. 

Middlebrooks, M. L., S. K. Pierce, and S. S. Bell. 2011. Foraging behavior under 

starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki. 

Plos One 6: e e22162 
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